Selected quad for the lemma: book_n

Word A Word B Word C Word D Occurrence Frequency Band MI MI Band Prominent
book_n definition_n proposition_n use_v 1,977 5 10.7773 5 false
View all documents for the selected quad

Text snippets containing the quad

ID Title Author Corrected Date of Publication (TCP Date of Publication) STC Words Pages
A00429 The elements of geometrie of the most auncient philosopher Euclide of Megara. Faithfully (now first) translated into the Englishe toung, by H. Billingsley, citizen of London. Whereunto are annexed certaine scholies, annotations, and inuentions, of the best mathematiciens, both of time past, and in this our age. With a very fruitfull præface made by M. I. Dee, specifying the chiefe mathematicall scie[n]ces, what they are, and wherunto commodious: where, also, are disclosed certaine new secrets mathematicall and mechanicall, vntill these our daies, greatly missed; Elements. English Euclid.; Dee, John, 1527-1608.; Candale, François de Foix, comte de, 1502-1594.; Billingsley, Henry, Sir, d. 1606. 1570 (1570) STC 10560; ESTC S106699 1,020,889 884

There are 81 snippets containing the selected quad. | View original text

diameter_n be_v double_a to_o that_o square_n who_o diameter_n it_o be_v corollary_n the_o 34._o theorem_a the_o 48._o proposition_n if_o the_o square_n which_o be_v make_v of_o one_o of_o the_o side_n of_o a_o triangle_n be_v equal_a to_o the_o square_n which_o be_v make_v of_o the_o two_o other_o side_n of_o the_o same_o triangle_n the_o angle_n comprehend_v under_o those_o two_o other_o side_n be_v a_o right_a angle_n svppose_v that_o abc_n be_v a_o triangle_n and_o let_v the_o square_n which_o be_v make_v of_o one_o of_o the_o side_n there_o namely_o of_o the_o side_n bc_o be_v equal_a to_o the_o square_n which_o be_v make_v of_o the_o side_n basilius_n and_o ac_fw-la then_o i_o say_v that_o the_o angle_n bac_n be_v a_o right_a angle_n raise_v up_o by_o the_o 11._o proposition_n from_o the_o point_n a_o unto_o the_o right_a line_n ac_fw-la a_o perpendicular_a line_n ad._n and_o by_o the_o third_o proposition_n unto_o the_o line_n ab_fw-la put_v a_o equal_a line_n ad._n and_o by_o the_o first_o petition_n draw_v a_o right_a line_n from_o the_o point_n d_o to_o the_o poin●_n c._n and_o forasmuch_o as_o the_o line_n dam_n be_v equal_a to_o the_o line_n ab_fw-la the_o square_n which_o be_v make_v of_o the_o line_n dam_n be_v equal_a to_o the_o square_n which_o be_v make_v of_o the_o line_n ab_fw-la put_v the_o square_n of_o the_o line_n ac_fw-la common_a to_o they_o both_o wherefore_o the_o square_n of_o the_o line_n dam_n and_o ac_fw-la be_v equal_a to_o the_o square_n of_o the_o line_n basilius_n and_o ac_fw-la but_o by_o the_o proposition_n go_v before_o the_o square_a of_o the_o line_n dc_o be_v equal_a to_o the_o square_n of_o the_o line_n ad_fw-la and_o ac_fw-la for_o the_o angle_n dac_o be_v a_o right_a angle_n and_o the_o square_a of_o bc_o be_v by_o supposition_n equal_a to_o the_o square_n of_o ab_fw-la and_o ac_fw-la wherefore_o the_o square_a of_o dc_o be_v equal_a to_o the_o square_n of_o bc_o wherefore_o the_o side_n dc_o be_v equal_a to_o the_o side_n bc._n and_o forasmuch_o as_o ab_fw-la be_v equal_a to_o ad_fw-la ●nd_n ac_fw-la be_v common_a to_o they_o both_o therefore_o these_o two_o side_n dam_n and_o ac_fw-la be_v equal_a to_o these_o two_o side_n basilius_n and_o ac_fw-la the_o one_o to_o the_o other_o and_o the_o base_a dc_o be_v equal_a to_o the_o base_a be_v wherefore_o by_o the_o 8._o proposition_n the_o angle_n dac_o be_v equal_a to_o the_o angle_n bac_n but_o the_o angle_n dac_o be_v a_o right_a angle_n wherefore_o also_o the_o angle_n bac_n be_v a_o right_a angle_n if_o therefore_o the_o square_n which_o be_v make_v of_o one_o of_o the_o side_n of_o a_o triangle_n be_v equal_a to_o the_o square_n which_o be_v make_v of_o the_o two_o other_o side_n of_o the_o same_o triangle_n the_o angle_n comprehend_v under_o those_o two_o other_o side_n be_v a_o right_a angle_n which_o be_v require_v to_o be_v prove_v former_a this_o proposition_n be_v the_o converse_n of_o the_o former_a and_o be_v of_o pelitarius_n demonstrate_v by_o a_o argument_n lead_v to_o a_o impossibility_n after_o this_o manner_n the_o end_n of_o the_o first_o book_n of_o euclides_n element_n ¶_o the_o second_o book_n of_o euclides_n element_n in_o this_o second_o book_n euclid_n show_v book_n what_o be_v a_o gnomon_n and_o a_o right_a angle_a parallelogram_n also_o in_o this_o book_n be_v set_v forth_o the_o power_n of_o line_n divide_v even_o and_o uneven_o and_o of_o line_n add_v one_o to_o a_o other_o the_o power_n of_o a_o line_n line_n be_v the_o square_a of_o the_o same_o line_n that_o be_v a_o square_a every_o side_n of_o which_o be_v equal_a to_o the_o line_n so_o that_o here_o be_v set_v forth_o the_o quality_n and_o propriety_n of_o the_o square_n and_o right_n line_v figure_n which_o be_v make_v of_o line_n &_o of_o their_o part_n algebra_n the_o arithmetician_n also_o our_o of_o this_o book_n gather_v many_o compendious_a rule_n of_o reckon_n and_o many_o rule_v also_o of_o algebra_n with_o the_o equation_n therein_o use_v the_o ground_n also_o of_o those_o rule_n be_v for_o the_o most_o part_n by_o this_o second_o book_n demonstrate_v book_n this_o book_n moreover_o contain_v two_o wonderful_a proposition_n one_o of_o a_o obtuse_a angle_a triangle_n and_o the_o other_o of_o a_o acute_a which_o with_o the_o aid_n of_o the_o 47._o proposition_n of_o the_o first_o book_n of_o euclid_n which_o be_v of_o a_o rectangle_n triangle_n of_o how_o great_a force_n and_o profit_n they_o be_v in_o matter_n of_o astronomy_n they_o know_v which_o have_v travail_v in_o that_o art_n wherefore_o if_o this_o book_n have_v none_o other_o profit_n be_v side_n only_o for_o these_o 2._o proposition_n sake_n it_o be_v diligent_o to_o be_v embrace_v and_o study_v the_o definition_n 1._o every_o rectangled_a parallelogram_n definition_n be_v say_v to_o be_v contain_v under_o two_o right_a line_n comprehend_v a_o right_a angle_n a_o parallelogram_n be_v a_o figure_n of_o four_o side_n be_v who_o two_o opposite_a or_o contrary_a side_n be_v equal_a the_o one_o to_o the_o other_o there_o be_v of_o parallelogram_n four_o kind_n parallelogram_n a_o square_a a_o figure_n of_o one_o side_n long_o a_o rombus_n or_o diamond_n and_o a_o romboide_n or_o diamond_n like_o figure_n as_o before_o be_v say_v in_o the_o 33._o definition_n of_o the_o first_o book_n of_o these_o four_o sort_n the_o square_a and_o the_o figure_n of_o one_o side_n long_o be_v only_o right_a angle_a parallelogram_n for_o that_o all_o their_o angle_n be_v right_a angle_n and_o either_o of_o they_o be_v contain_v according_a to_o this_o definition_n under_o two_o right_a line_n whi●h_o concur_v together_o and_o cause_v the_o right_a angle_n and_o contain_v the_o same_o of_o which_o two_o line_n the_o one_o be_v the_o length_n of_o the_o figure_n &_o the_o other_o the_o breadth_n the_o parallelogram_n be_v imagine_v to_o be_v make_v by_o the_o draught_n or_o motion_n of_o one_o of_o the_o line_n into_o the_o length_n of_o the_o other_o as_o if_o two_o number_n shall_v be_v multiply_v the_o one_o into_o the_o other_o as_o the_o figure_n abcd_o be_v a_o parallelogram_n and_o be_v say_v to_o be_v contain_v under_o the_o two_o right_a line_n ab_fw-la and_o ac_fw-la which_o contain_v the_o right_a angle_n bac_n or_o under_o the_o two_o right_a line_n ac_fw-la and_o cd_o for_o they_o likewise_o contain_v the_o right_a angle_n acd_o of_o which_o 2._o line_n the_o one_o namely_o ab_fw-la be_v the_o length_n and_o the_o other_o namely_o ac_fw-la be_v the_o breadth_n and_o if_o we_o imagine_v the_o line_n ac_fw-la to_o be_v draw_v or_o move_v direct_o according_a to_o the_o length_n of_o the_o line_n ab_fw-la or_o contrary_a wise_a the_o line_n ab_fw-la to_o be_v move_v direct_o according_a to_o the_o length_n of_o the_o line_n ac_fw-la you_o shall_v produce_v the_o whole_a rectangle_n parallelogram_n abcd_o which_o be_v say_v to_o be_v contain_v of_o they_o even_o as_o one_o number_n multiply_v by_o a_o other_o produce_v a_o plain_a and_o right_a angle_a superficial_a number_n as_o you_o see_v in_o the_o figure_n here_o set_v where_o the_o number_n of_o six_o or_o six_o unity_n be_v multiply_v by_o the_o number_n of_o five_o or_o by_o five_o unity_n of_o which_o multiplication_n be_v produce_v 30._o which_o number_n be_v set_v down_o and_o describe_v by_o his_o unity_n represent_v a_o plain_n and_o a_o right_a angle_a number_n wherefore_o even_o as_o equal_a number_n multiple_v by_o equal_a number_n produce_v number_n equal_v the_o one_o to_o the_o other_o so_o rectangle_n parallelogram_n which_o be_v comprehend_v under_o equal_a line_n be_v equal_a the_o one_o to_o the_o other_o definition_n 2._o in_o every_o parallelogram_n one_o of_o those_o parallelogram_n which_o soever_o it_o be_v which_o be_v about_o the_o diameter_n together_o with_o the_o two_o supplement_n be_v call_v a_o gnomon_n those_o particular_a parallelogram_n be_v say_v to_o be_v about_o the_o diameter_n of_o the_o parallelogram_n which_o have_v the_o same_o diameter_n which_o the_o whole_a parallelogram_n have_v and_o supplement_n be_v such_o which_o be_v without_o the_o diameter_n of_o the_o whole_a parallelogram_n as_o of_o the_o parallelogram_n abcd_o the_o partial_a or_o particular_a parallelogram_n gkcf_n and_o ebkh_n be_v parallelogram_n about_o the_o diameter_n for_o that_o each_o of_o they_o have_v for_o his_o diameter_n a_o part_n of_o the_o diameter_n of_o the_o whole_a parallelogram_n as_o ck_v and_o kb_v the_o particular_a diameter_n be_v part_n of_o the_o line_n cb_o which_o be_v the_o diameter_n of_o the_o whole_a parallelogram_n and_o the_o two_o parallelogram_n aegk_n and_o khfd_n be_v supplement_n because_o they_o be_v without_o the_o diameter_n of_o the_o whole_a parallelogram_n namely_o cb._n now_o any_o one_o of_o those_o partial_a parallelogram_n
that_o the_o line_n of_o be_v make_v equal_a to_o the_o line_n ad_fw-la which_o be_v the_o diameter_n of_o the_o square_n abcd_o of_o which_o square_v the_o line_n ab_fw-la be_v a_o side_n it_o be_v certain_a that_o the_o ●ide_v of_o a_o square_n be_v incommensurable_a in_o length_n to_o the_o diameter_n of_o the_o same_o square_n if_o there_o be_v yet_o find_v any_o one_o superficies_n which_o measure_v the_o two_o square_n abcd_o and_o efgh_a as_o here_o do_v the_o triangle_n abdella_n or_o the_o triangle_n acd_v note_v in_o the_o square_n abcd_o or_o any_o of_o the_o four_o triangle_n note_v in_o the_o square_a efgh_o as_o appear_v somewhat_o more_o manifest_o in_o the_o second_o example_n in_o the_o declaration_n of_o the_o last_o definition_n go_v before_o the_o line_n of_o be_v also_o a_o rational_a line_n note_v that_o these_o line_n which_o here_o be_v call_v rational_a line_n be_v not_o rational_a line_n of_o purpose_n or_o by_o supposition_n as_o be_v the_o first_o rational_a line_n but_o be_v rational_a only_o by_o reason_n of_o relation_n and_o comparison_n which_o they_o have_v unto_o it_o because_o they_o be_v commensurable_a unto_o it_o either_o in_o length_n and_o power_n or_o in_o power_n only_o far_o here_o be_v to_o be_v note_v that_o these_o word_n length_n and_o power_n and_o power_n only_o be_v join_v only_o with_o these_o worde●_n commensurable_a or_o incommensurable_a and_o be_v never_o join_v with_o these_o word_n rational_a or_o irrational_a so_o that_o no_o line_n can_v be_v call_v rational_a in_o length_n or_o in_o power_n nor_o like_o wise_a can_v they_o be_v call_v irrational_a in_o length_n or_o in_o power_n wherein_o undoubted_o campanus_n be_v deceive_v book_n who_o use_v those_o word_n &_o speech_n indifferent_o cause_v &_o bring_v in_o great_a obscurity_n to_o the_o proposition_n and_o demonstration_n of_o this_o book_n which_o he_o shall_v easy_o see_v which_o mark_v with_o diligence_n the_o demonstration_n of_o campanus_n in_o this_o book_n 7_o line_n which_o be_v incommensurable_a to_o the_o rational_a line_n be_v call_v irrational_a definition_n by_o line_n incommensurable_a to_o the_o rational_a line_n suppose_v in_o this_o place_n he_o understand_v such_o as_o be_v incommensurable_a unto_o it_o both_o in_o length_n and_o in_o power_n for_o there_o be_v no_o line_n incommensurable_a in_o power_n only_o for_o it_o can_v be_v that_o any_o line_n shall_v so_o be_v incommensurable_a in_o power_n only_o that_o they_o be_v not_o also_o incommensurable_a in_o length_n what_o so_o ever_o line_n be_v incommensurable_a in_o power_n the_o same_o be_v also_o incommensurable_a in_o length_n neither_o can_v euclid_n here_o in_o this_o place_n mean_a line_n incommensurable_a in_o length_n only_o for_o in_o the_o definition_n before_o he_o call_v they_o rational_a line_n neither_o may_v they_o be_v place_v amongst_o irrational_a line_n wherefore_o it_o remain_v that_o in_o this_o diffintion_n he_o speak_v only_o of_o those_o line_n which_o be_v incommensurable_a to_o the_o rational_a line_n first_o give_v and_o suppose_v both_o in_o length_n and_o in_o power_n which_o by_o all_o mean_n be_v incommensurable_a to_o the_o rational_a line_n &_o therefore_o most_o apt_o be_v they_o call_v irrational_a line_n this_o definition_n be_v easy_a to_o be_v understand_v by_o that_o which_o have_v be_v say_v before_o yet_o for_o the_o more_o plainness_n see_v this_o example_n let_v the_o ●●rst_a rational_a line_n suppose_v be_v the_o line_n ab_fw-la who_o square_a or_o quadrate_n let_v be_v abcd._n and_o let_v there_o be_v give_v a_o other_o line_n of_o which_o l●t_v be_v to_o the_o rational_a line_n incommensurable_a in_o length_n and_o power_n so_o that_o let_v no_o one_o line_n measure_v the_o length_n of_o the_o two_o line_n ab_fw-la and_o of_o and_o let_v the_o square_n of_o the_o line_n of_o be_v efgh_a now_o if_o also_o there_o be_v no_o one_o superficies_n which_o measure_v the_o two_o square_n abcd_o and_o efgh_a as_o be_v suppose_v to_o be_v in_o this_o example_n they_o be_v the_o line_n of_o a_o irrational_a line_n which_o word_n irrational_a as_o before_o do_v this_o word_n rational_a mislike_v many_o learned_a in_o this_o knowledge_n of_o geometry_n flussates_n uncertain_a as_o he_o leave_v the_o word_n rational_a and_o in_o stead_n thereof_o use_v this_o word_n certain_a so_o here_o he_o leave_v the_o word_n irrational_a and_o use_v in_o place_n thereof_o this_o word_n uncertain_a and_o ever_o name_v these_o line_n uncertain_a line_n petrus_n montaureus_n also_o mislike_v the_o word_n irrational_a will_v rather_o have_v they_o to_o be_v call_v surd_a line_n yet_o because_o this_o word_n irrational_a have_v ever_o by_o custom_n and_o long_a use_n so_o general_o be_v receive_n he_o use_v continual_o the_o same_o in_o greek_a such_o line_n be_v call_v 〈◊〉_d 〈◊〉_d 〈◊〉_d 〈◊〉_d 〈◊〉_d alogoi_n which_o signify_v nameless_a unspeakable_a uncertain_a in_o determinate_a line_n and_o with_o out_o proportion_n not_o that_o these_o irrational_a line_n have_v no_o proportion_n at_o all_o either_o to_o the_o first_o rational_a line_n or_o between_o themselves_o but_o be_v so_o name_v for_o that_o their_o proportion_n to_o the_o rational_a line_n can_v be_v express_v in_o number_n that_o be_v undoubted_o very_o untrue_a which_o many_o write_v that_o their_o proportion_n be_v unknown_a both_o to_o we_o and_o to_o nature_n be_v it_o not_o think_v you_o a_o thing_n very_o absurd_a to_o say_v that_o there_o be_v any_o thing_n in_o nature_n and_o produce_v by_o nature_n to_o be_v hide_v from_o nature_n and_o not_o to_o be_v know_v of_o nature_n it_o can_v not_o be_v say_v that_o their_o proportion_n be_v utter_o hide_v and_o unknown_a to_o we_o much_o less_o unto_o nature_n although_o we_o can_v geve_v they_o their_o name_n and_o distinct_o express_v they_o by_o number_n otherwise_o shall_v euclid_n have_v take_v all_o this_o travel_n and_o wonderful_a diligence_n bestow_v in_o this_o booke●_n in_o vain_a and_o to_o no_o use●_n in_o which_o he_o do_v nothing_o ell●_n but_o teach_v the_o propriety_n and_o passion_n of_o these_o irrational_a lines●_n and_o show_v the_o proportion_n which_o they_o have_v the_o one_o to_o the_o other_o here_o be_v also_o to_o be_v note_v which_o thing_n also_o tartalea_n have_v before_o diligent_o noted●_n that_o campanus_n and_o many_o other_o writer_n of_o geometry●_n over_o much_o ●●●ed_a and_o be_v deceive_v in_o that_o they_o write_v and_o teach_v that_o all_o these_o line_n who_o square_n be_v not_o signify_v and_o may_v be_v express_v by_o a_o square_a number_n although_o they_o may_v by_o any_o other_o number_n as_o by_o 11._o 12._o 14._o and_o such_o other_o not_o square_a number_n be_v irrational_a line_n which_o be_v manifest_o repugnant_a to_o the_o ground_n and_o principle_n of_o euclid_n who_o will_v that_o all_o line_n which_o be_v commensurable_a to_o the_o rational_a line_n whether_o it_o be_v in_o length_n and_o power_n or_o in_o power_n only_o shall_v be_v rational_a undoubted_o this_o have_v be_v one_o of_o the_o chief_a and_o great_a cause_n of_o the_o wonderful_a confusion_n and_o darkness_n of_o this_o book_n book_n which_o so_o have_v toss_v and_o turmoil_v the_o wit_n of_o all_o both_o writer_n and_o reader_n master_n and_o scholar_n and_o so_o overwhelm_v they_o that_o they_o can_v not_o with_o out_o infinite_a travel_n and_o sweat_v attain_v to_o the_o truth_n and_o perfect_a understanding_n thereof_o definition_n 8_o the_o square_n which_o be_v describe_v of_o the_o rational_a right_a line_n suppose_v be_v rational_a until_o this_o definition_n have_v euclid_n set_v forth_o the_o nature_n and_o propriety_n of_o the_o first_o kind_n of_o magnitude_n namely_o of_o line_n how_o they_o be_v rational_a or_o irrational_a now_o he_o begin_v to_o ●hew_v how_o the_o second_o kind_n of_o magnitude_n namely_o superficies_n be_v one_o to_o the_o other_o rational_a or_o irrational_a this_o definition_n be_v very_a plain_n suppose_v the_o line_n ab_fw-la to_o be_v the_o rational_a line_n have_v his_o part_n and_o division_n certain_o know_v the_o square_a of_o which_o line_n let_v be_v the_o square_a abcd._n now_o because_o it_o be_v the_o square_a of_o the_o rational_a line_n ab_fw-la it_o be_v also_o call_v rational_a and_o as_o the_o line_n ab_fw-la be_v the_o first_o rational_a line_n unto_o which_o other_o line_n compare_v be_v count_v rational_a or_o irrational_a so_o be_v the_o quadrat_fw-la or_o square_v thereof_o the_o ●irst_n rational_a superficies_n unto_o which_o all_o other_o square_n or_o figure_n compare_v be_v count_v and_o name_v rational_a or_o irrational_a 9_o such_o which_o be_v commensurable_a unto_o it_o be_v rational_a definition_n in_o this_o definition_n where_o it_o be_v say_v such_o as_o be_v commensurable_a to_o the_o square_n of_o the_o rational_a line_n be_v not_o understand_v only_o other_o square_n or_o
first_o demonstration_n demonstration_n lead_v to_o a_o impossibility_n this_o proposition_n in_o discreet_a quantity_n answer_v to_o the_o 23._o proposition_n of_o the_o five_o book_n in_o continual_a quantity_n this_o and_o the_o eleven_o proposition_n follow_v declare_v the_o passion_n and_o property_n of●_n prime_a number_n demonstration_n lead_v to_o a_o impossibility_n this_o be_v the_o converse_n of_o the_o former_a proposition_n demonstration_n lead_v to_o a_o absurdity_n demonstration_n lead_v to_o a_o absurdity_n demonstration_n lead_v to_o a_o absurdity_n demonstration_n demonstration_n demonstration_n demonstration_n of_o the_o first_o part_n lead_v to_o a_o absurdity_n demonstration_n of_o the_o second_o part_n which_o be_v the_o con●c●se_n of_o the_o first_o lean_v also_o to_o a_o absurdity_n demonstrasion_n lead_v to_o a_o absurdity_n demonstrasion_n a_o corollary_n ●●ded_v by_o campave_n demonstration_n l●ading_v to_o a_o impossibility_n an_o other_o demonstration_n demonstration_n two_o case_n in_o this_o proposition_n the_o first_o case_n the_o second_o case_n demonstration_n demonstration_n lead_v to_o a_o absurdity_n a_o corollary_n add_v by_o campane_n two_o case_n in_o this_o proposition_n the_o first_o case_n demonstration_n lead_v to_o a_o absurdity_n the_o second_o case●_n demonstration_n lead_v to_o a_o absurdity_n demonstration_n lead_v to_o a_o impossibility_n two_o case_n in_o this_o proposition_n the_o first_o case_n demonstration_n lea●i●g_v ●o_o a_o absurdity_n the_o second_o case_n demonstration_n lead_v to_o a_o absurdity_n a_o corollary_n demonstration_n the_o converse_n of_o the_o former_a proposition_n demonstration_n construction_n demonstration_n le●ding_v to_o a_o absurdity_n a_o corollary_n ad●ed_v by_o campane_n how_o to_o ●inde_v out_o the_o second_o least_o number_n and_o the_o three_o and_o so_o ●orth_o infinite_o how_o to_o si●●_n out_o the_o least_o ●●m●_n a_o con●ay●●g_n ●●e_z pa●●s_n of_o part_n the_o argu●●●●_n of_o the_o eight_o book_n demonstration_n lead_v to_o a_o absurdity_n construction_n demonstration_n this_o proposition_n be_v the_o ●●uerse_a of_o the_o first_o demonstration●_n two_o case_n in_o this_o proposition_n the_o first_o case_n demonstration_n lead_v to_o a_o absurdity_n the_o second_o case_n demonstration_n this_o proposition_n in_o number_n answer_v to_o the_o of_o the_o six_o touch_v parellelogramme_n construction_n demonstration_n an_o other_o demonstration_n after_o campane_n demonstration_n demonstration_n lead_v to_o a_o impossibility_n demonstration_n a_o corollary_n add_v by_o flussates_n construction_n demonstration_n this_o proposition_n be_v the_o converse_n of_o the_o former_a construction_n demonstration_n the_o first_o part_n of_o this_o proposition_n demonstrate_v the_o second_o part_n demonstrate_v construction_n the_o first_o part_n of_o this_o pr●position_n demonstrate_v the_o second_o part_n demonstrate_v construction_n demonstration_n the_o first_o part_n of_o this_o proposition_n the_o second_o part_n be_v the_o converse_n of_o the_o first_o the_o first_o part_n of_o this_o proposition_n the_o second_o part_n be_v the_o converse_n of_o the_o first_o a_o negative_a proportion_n the_o first_o part_n of_o this_o proposition_n the_o second_o part_n be_v the_o converse_n of_o the_o first_o a_o negative_a proposition_n the_o first_o part_n of_o this_o proposition_n the_o second_o part_n be_v the_o converse_n of_o the_o first_o demonstration_n of_o the_o fi●st_a part_n of_o this_o proposition_n demonstration_n of_o the_o second_o part_n demonstration_n of_o the_o first_o part_n of_o this_o proposition_n the_o second_o part_n this_o proposition_n be_v the_o converse_n of_o the_o 18._o proposition_n construction_n demonstration_n this_o proposition_n be_v the_o converse_n of_o the_o 19_o proposition_n construction_n demonstration_n demonstration_n demonstration_n demonstration_n demonstration_n a_o corollary_n add_v by_o flussates_n construction_n construction_n demonstration_n a_o corollary_n add_v by_o flussates_n another_o corollary_n add_v by_o flussates_n the_o argument_n of_o the_o ni●th_o book_n demonstration_n this_o proposition_n be_v the_o converse_n o●_n t●e_z form●●_n demonstration_n a_o corollary_n a●ded_v by_o campane_n demonstration_n demonstration_n demonstration_n a_o corollary_n add_v by_o campane_n demonstration_n demonstration_n demonstration_n of_o the_o first_o part_n the_o second_o part_n demonstrate_v demostration_n of_o the_o three_o part_n demostration_n of_o the_o first_o part_n of_o this_o proposition_n the_o second_o p●rt_n demonstrate_v demonstration_n of_o the_o first_o part_n leave_v to_o a_o absurdity_n demonstration_n of_o the_o ●●cond_a p●●●_n lead_v al●o_o to_o a_o absurdity_n demonstration_n demonstration_n lead_v to_o a_o absurdity_n an_o other_o demonstration_n a●ter_n flussates_n demonstration_n lead_v to_o a_o absurdity_n an_o other_o demonstration_n after_o campane_n demonstration_n lead_v to_o a_o absurdity_n a_o proposition_n add_v by_o campane_n construction_n demonstration_n demonstration_n to_o prove_v that_o the_o number_n a_o and_o c_o be_v prime_a to_o b._n demonstratiou_n this_o proposition_n be_v the_o converse_n of_o the_o former_a demonstration_n this_o answer_v to_o the_o 2._o of_o the_o second_o demonstration_n this_o answer_v to_o the_o 3._o of_o the_o three_o demonstration_n this_o answer_v to_o th●_z 4._o of_o the_o second_o demonstration_n this_o answer_v to_o the_o 5._o of_o the_o second_o demonstration_n this_o answer_v to_o the_o 6._o of_o the_o second_o demonstration_n this_o answer_v to_o the_o 7._o of_o the_o second_o demonstration_n this_o answer_v to_o the_o 8._o of_o the_o second_o demonstratition_n this_o answer_v to_o th●_z 9_o of_o the_o second_o demonstration_n this_o answer_v to_o the_o 10._o o●_n the_o second_o demonstration_n a_o negative_a proposition_n demonstration_n lea●ing_v to_o a_o impossibility_n demonstration_n lead_v to_o a_o absurdity_n demonstration_n lead_v to_o a_o abjurditie_n three_o case_n in_o this_o proposition_n the_o first_o case_n the_o second_o case_n the_o three_o case_n divert_v case_n ●n_v this_o proposition_n the_o first_o case_n two_o case_n in_o this_o proposition_n the_o first_o case_n the_o second_o case_n demonstration_n demonstration_n demonstration_n demonstration_n demonstration_n demonstration_n demonstration_n demonstration_n demonstration_n a_o proposition_n add_v by_o campane_n a_o other_o add_v by_o he_o demonstration_n lead_v to_o a_o absurdity_n demonstration_n demonstration_n demonstration_n lead_v to_o a_o absurdity_n an_o other_o demonstration_n demonstration_n demonstration_n this_o proposition_n teach●th_v how_o to_o find_v out_o a_o perfect_a number_n construction_n demonstration_n demonstration_n lead_v to_o a_o absurdity_n the_o argument_n of_o the_o ten_o book_n difference_n between_o number_n and_o magnitude_n a_o line_n be_v not_o make_v of_o point_n as_o number_n be_v make_v of_o unity_n this_o book_n the_o hard_a to_o understand_v of_o all_o the_o book_n of_o euclid_n in_o this_o book_n be_v entreat_v of_o a_o strange_a manner_n of_o matter_n then_o in_o the_o former_a many_o even_o of_o the_o well_o learn_v have_v think_v that_o this_o book_n can_v not_o well_o be_v understand_v without_o algebra_n the_o nine_o former_a book_n &_o the_o principle_n of_o this_o ●ooke_n well_o understand_v this_o book_n will_v not_o be_v hard_a to_o understand_v the_o f●rst_a definition_n the_o second_o definition_n contraries_n make_v manifest_a by_o the_o compare_v of_o the_o one_o to_o the_o other_o the_o third_o definition_n what_o the_o power_n of_o a_o line_n be_v the_o four_o definition_n unto_o the_o suppose_a line_n first_o set_v may_v be_v compare_v infinite_a line_n why_o some_o mislike_n that_o the_o line_n first_o set_v shall_v be_v call_v a_o rational_a line_n flussates_n call_v this_o line_n a_o line_n certain_a this_o rational_a line_n the_o ground_n in_o a_o manner_n of_o all_o the_o proposition_n in_o this_o ten_o book_n note_n the_o line_n rational_a of_o purpose_n the_o six_o definition_n camp●nus_n ●ath_z cause_v much_o obscurity_n in_o this_o ten_o book_n the_o seven_o definition_n flussates_n in_o steed_n of_o this_o word_n irrational_a use_v this_o word_n uncertain_a why_o they_o be_v call_v irrational_a line_n the_o cause_n of_o the_o obscurity_n and_o confusedness_n in_o this_o book_n the_o eight_o definition_n the_o nine_o definition_n the_o ten_o definition_n the_o eleven_o definition_n construction_n demonstration_n a_o corollary_n construction_n demonstration_n this_o proposition_n teach_v that_o incontinuall_a quantity_n which_o the_o first_o of_o the_o seven_o teach_v in_o discrete_a quantity_n construction_n demonstration_n lead_v to_o a_o absurdity_n two_o case_n in_o this_o proposition_n the_o first_o case_n this_o proposition_n teach_v that_o in_o continual_a quantity_n which_o the_o 2._o of_o the_o s●●ith_v teach_v in_o number_n the_o second_o case_n demonstration_n lead_v to_o a_o absurdity_n a_o corollary_n this_o problem_n reduce_v to_o a_o theorem_a this_o proposition_n teach_v that_o in_o continual_a quantity_n which_o the_o 3._o of_o the_o second_o teach_v in_o number_n construction_n two_o case_n in_o this_o proposition_n the_o first_o case_n demonstration_n lead_v to_o a_o absurdity_n the_o second_o case_n a_o le●ma_n necessary_a
about_o the_o diameter_n together_o with_o the_o two_o supplement_n make_v a_o gnomon_n as_o the_o parallelogram_n ebkh_n with_o the_o two_o supplement_n aegk_n and_o khfd_n make_v the_o gnomon_n fgeh_a likewise_o the_o parallelogram_n gkcf_n with_o the_o same_o two_o supplement_n make_v the_o gnomon_n ehfg_n and_o this_o definition_n of_o a_o gnomon_n extend_v itself_o and_o be_v general_a to_o all_o kind_n of_o parallelogram_n whether_o they_o be_v square_n or_o figure_n of_o one_o side_n long_o or_o rhombus_fw-la or_o romboide_n to_o be_v short_a if_o you_o take_v away_o from_o the_o whole_a parallelogram_n one_o of_o the_o partial_a parallelogram_n which_o be_v about_o the_o diameter_n whether_o you_o will_v the_o rest_n of_o the_o figure_n be_v a_o gnomon_n campane_v after_o the_o last_o proposition_n of_o the_o first_o book_n add_v this_o proposition_n book_n two_o square_n be_v give_v to_o adjoin_v to_o one_o of_o they_o a_o gnomon_n equal_a to_o the_o other_o square_n which_o for_o that_o as_o than_o it_o be_v not_o teach_v what_o a_o gnomon_n be_v i_o there_o omit_v think_v that_o it_o may_v more_o apt_o be_v place_v here_o the_o do_v and_o demonstration_n whereof_o be_v thus_o suppose_v that_o there_o be_v two_o square_n ab_fw-la and_o cd_o unto_o one_o of_o which_o namely_o unto_o ab_fw-la it_o be_v require_v to_o add_v a_o gnomon_n equal_a to_o the_o other_o square_n namely_o to_o cd_o produce_v the_o side_n bf_o of_o the_o square_a ab_fw-la direct_o to_o the_o point_n e._n and_o put_v the_o line_n fe_o equal_a to_o the_o side_n of_o the_o square_a cd_o and_o draw_v a_o line_n from_o e_o to_o a._n now_o then_o forasmuch_o as_o efa_n be_v a_o rectangle_n triangle_n therefore_o by_o the_o 47._o of_o the_o first_o the_o square_a of_o the_o line_n ea_fw-la be_v equal_a to_o the_o square_n of_o the_o line_n of_o &_o fa._n but_o the_o square_n of_o the_o line_n of_o be_v equal_a to_o the_o square_a cd_o &_o the_o square_a of_o the_o side_n favorina_n be_v the_o square_a ab_fw-la wherefore_o the_o square_a of_o the_o line_n ae_n be_v equal_a to_o the_o two_o square_n cd_o and_o ab_fw-la but_o the_o side_n of_o and_o favorina_n be_v by_o the_o 21._o of_o the_o first_o long_o than_o the_o side_n ae_n and_o the_o side_n favorina_n be_v equal_a to_o the_o side_n fb_o wherefore_o the_o side_n of_o and_o fb_o be_v long_o they_o the_o side_n ae_n wherefore_o the_o whole_a line_n be_v be_v long_o than_o the_o line_n ae_n from_o the_o line_n be_v cut_v of_o a_o line_n equal_a to_o the_o line_n ae_n which_o let_v be_v bc._n and_o by_o the_o 46._o proposition_n upon_o the_o line_n bc_o describe_v a_o square_a which_o let_v be_v bcgh_n which_o shall_v be_v equal_a to_o the_o square_n of_o the_o line_n ae_n but_o the_o square_n of_o the_o line_n ae_n be_v equal_a to_o the_o two_o square_n ab_fw-la and_o dc_o wherefore_o the_o square_a bcgh_n be_v equal_a to_o the_o same_o square_n wherefore_o forasmuch_o as_o the_o square_a bcgh_n be_v compose_v of_o the_o square_a ab_fw-la and_o of_o the_o gnomon_n fgah_n the_o say_a gnomon_n shall_v be_v equal_a unto_o the_o square_a cd_o which_o be_v require_v to_o be_v do_v a_o other_o more_o ready_a way_n after_o pelitarius_n suppose_v that_o there_o be_v two_o square_n who_o side_n let_v be_v ab_fw-la and_o bc._n it_o be_v require_v unto_o the_o square_n of_o the_o line_n ab_fw-la to_o add_v a_o gnomon_n equal_a to_o the_o square_n of_o the_o line_n bc._n set_v the_o line_n ab_fw-la and_o bc_o in_o such_o sort_n that_o they_o make_v a_o right_a angle_n abc_n and_o draw_v a_o line_n from_o a_o to_o c._n and_o upon_o the_o line_n ab_fw-la describe_v a_o square_n which_o let_v be_v abde_n and_o produce_v the_o line_n basilius_n to_o the_o point_n fletcher_n and_o put_v the_o line_n bf_o equal_a to_o the_o line_n ac_fw-la and_o upon_o the_o line_n bf_o describe_v a_o square_n which_o let_v be_v bfgh_o which_o shall_v be_v equal_a to_o the_o square_n of_o the_o line_n ac_fw-la when_o as_o the_o line_n bf_o and_o ac_fw-la be_v equal_a and_o therefore_o it_o be_v equal_a to_o the_o square_n of_o the_o two_o line_n ab_fw-la and_o bc._n now_o forasmuch_o as_o the_o square_a bfgh_o be_v make_v complete_a by_o the_o square_a abde_n and_o by_o the_o gnomon_n fegd_v the_o gnomon_n fegd_v shall_v be_v equal_a to_o the_o square_n of_o the_o line_n bc_o which_o be_v require_v to_o be_v do_v the_o 1._o theorem_a the_o 1._o proposition_n if_o there_o be_v two_o right_a line_n and_o if_o the_o one_o of_o they_o be_v divide_v into_o part_n how_o many_o soever_o the_o rectangle_n figure_n comprehend_v under_o the_o two_o right_a line_n be_v equal_a to_o the_o rectangle_n figure_n which_o be_v comprehend_v under_o the_o line_n undivided_a and_o under_o every_o one_o of_o the_o part_n of_o the_o other_o line_n svppose_v that_o there_o be_v two_o right_a line_n a_o and_o bc_o and_o let_v one_o of_o they_o namely_o bc_o be_v divide_v at_o all_o adventure_n in_o the_o point_n d_o and_o e._n then_o i_o say_v that_o the_o rectangle_n figure_n comprehend_v under_o the_o line_n a_o and_o bc_o be_v equal_a unto_o the_o rectangle_n figure_n comprehend_v under_o the_o line_n a_o and_o bd_o &_o unto_o the_o rectangle_n figure_n which_o be_v comprehend_v under_o the_o line_n a_o and_o de_fw-fr and_o also_o unto_o the_o rectangle_n figure_n which_o be_v comprehend_v under_o the_o line_n a_o and_o ec_o construction_n for_o from_o the_o point_n brayse_v up_o by_o the_o 11._o of_o the_o first_o unto_o the_o right_a line_n bc_o a_o perpendicular_a line_n bf_o &_o unto_o the_o line_n a_o by_o the_o three_o of_o the_o first_o put_v the_o line_n bg_o equal_a and_o by_o the_o point_n g_z by_o the_o 31._o of_o the_o first_o draw_v a_o parallel_n line_n unto_o the_o right_a line_n bc_o and_o let_v the_o same_o be_v gm_n and_o by_o the_o self_n same_o by_o the_o poor_n d_z e_o and_o c_o draw_v unto_o the_o line_n bg_o these_o parallel_a line_n dk_o demonstration_n el_n and_o ch._n now_o then_o the_o parallelogram_n bh_o be_v equal_a to_o these_o parallelogram_n bk_o dl_o and_o eh_o but_o the_o parallelogram_n bh_o be_v equal_a unto_o that_o which_o be_v contain_v under_o the_o line_n a_o and_o bc._n for_o it_o be_v comprehend_v under_o the_o line_n gb_o &_o bc_o and_o the_o line_n gb_o be_v equal_a unto_o the_o line_n a_o and_o the_o parallelogram_n bk_o be_v equal_a to_o that_o which_o be_v contain_v under_o the_o line_n a_o and_o bd_o for_o it_o be_v comprehend_v under_o the_o line_n gb_o and_o bd_o and_o bg_o be_v equal_a unto_o a_o and_o the_o parallelogram_n dl_o be_v equal_a to_o that_o which_o be_v contain_v under_o the_o line_n a_o and_o de_fw-fr for_o the_o line_n dk_o that_o be_v bg_o be_v equal_a unto_o a_o and_o moreover_o likewise_o the_o parallelogram_n eh_o be_v equal_a to_o that_o which_o be_v contain_v under_o the_o line_n a_o &_o ec_o wherefore_o that_o which_o be_v comprehend_v under_o the_o line_n a_o &_o bc_o be_v equal_a to_o that_o which_o be_v comprehend_v under_o the_o line_n a_o &_o bd_o &_o unto_o that_o which_o be_v comprehend_v under_o the_o line_n a_o and_o de_fw-fr and_o moreover_o unto_o that_o which_o be_v comprehend_v under_o the_o line_n a_o and_o ec_o if_o therefore_o there_o be_v two_o right_a line_n and_o if_o the_o one_o of_o they_o be_v divide_v into_o part_n how_o many_o soever_o the_o rectangle_n figure_n comprehend_v under_o the_o two_o right_a line_n be_v equal_a to_o the_o rectangle_n figure_n which_o be_v comprehend_v under_o the_o line_n undivided_a and_o under_o every_o one_o of_o the_o part_n of_o the_o other_o line_n which_o be_v require_v to_o be_v demonstrate_v because_o that_o all_o the_o proposition_n of_o this_o second_o book_n for_o the_o most_o part_n be_v true_a both_o in_o line_n and_o in_o number_n and_o may_v be_v declare_v by_o both_o therefore_o have_v i_o have_v add_v to_o every_o proposition_n convenient_a number_n for_o the_o manifestation_n of_o the_o same_o and_o to_o the_o end_n the_o studious_a and_o diligent_a reader_n may_v the_o more_o full_o perceive_v and_o understand_v the_o agreement_n of_o this_o art_n of_o geometry_n with_o the_o science_n of_o arithmetic_n and_o how_o never_o &_o dear_a sister_n they_o be_v together_o so_o that_o the_o one_o can_v without_o great_a blemish_n be_v without_o the_o other_o i_o have_v here_o also_o join_v a_o little_a book_n of_o arithmetic_n write_v by_o one_o barlaam_n a_o greek_a author_n a_o man_n of_o great_a knowledge_n in_o which_o book_n be_v by_o the_o author_n demonstrate_v many_o of_o the_o self_n same_o propriety_n and_o passion_n in_o number_n which_o euclid_n in_o this_o his_o second_o book_n have_v demonstrate_v in_o magnitude_n
&_o m._n demonstration●_n if_o therefore_o g_z exceed_v l_o then_z also_o h_o exceed_v m_o and_o if_o it_o be_v equal_a it_o be_v equal_a and_o if_o it_o be_v less_o it_o be_v less_o by_o the_o converse_n of_o the_o 6●_o definition_n of_o the_o five_o again_o because_o that_o as_o c_o be_v to_o d_z so_o be_v e_o to_o fletcher_n and_o to_o c_o and_o e_o be_v take_v ●●●em●ltiplices_n h_o ●●d_z king_n and_o likewise_o to_o d_z &_o f_o be_v take_v certain_a other_o equemultiplices_fw-la m_o &_o n._n if_o therefore_o h_o exceed_v m_o than_o also_o king_n exceed_v n_o and_o if_o it_o be_v equal_a it_o be_v equal_a and_o if_o it_o be_v less_o it_o be_v less_o by_o the_o same_o converse_n but_o if_o king_n exceed_v m_o than_o also_o g_z exceed_v l_o and_o if_o it_o be_v equal_a it_o be_v equal_a and_o if_o it_o be_v less_o it_o be_v less_o by_o the_o same_o converse_n wherefore_o if_o g_z exceed_v l_o then_z king_n also_o exceed_v n_o and_o if_o it_o be_v equal_a it_o be_v equal_a and_o if_o it_o be_v less_o it_o be_v less_o but_o g_z &_o king_n be_v equemultiplices_fw-la of_o a_o &_o e._n and_o l_o &_o n_o be_v certain_a other_o equemultiplices_fw-la of_o b_o &_o f._n wherefore_o by_o the_o 6._o definition_n as_o a_o be_v to_o b_o so_o be_v e_o to_o f._n proportion_n therefore_o which_o be_v one_o and_o the_o self_n same_o to_o any_o one_o proportion_n be_v also_o the_o self_n same_o one_o to_o the_o other_o which_o be_v require_v to_o be_v prove_v the_o 12._o theorem_a the_o 12._o proposition_n if_o there_o be_v a_o number_n of_o magnitude_n how_o many_o soe●●r_n proportional_a as_o one_o of_o the_o antecedentes_fw-la be_v to_o one_o of_o the_o consequentes_fw-la so_o be_v all_o the_o antecedentes_fw-la to_o all_o the_o consequentes_fw-la svppose_v that_o there_o be_v a_o number_n of_o magnitude_n how_o many_o soever_o namely_o a_o b_o c_o d_o e_o f_o in_o proportion_n so_o that_o as_o a_o be_v to_o b_o so_o let_v c_o be_v to_o d_o and_o e_o to_o f._n then_o i_o say_v that_o as_o a_o be_v to_o b_o so_o 〈◊〉_d a_o c_o e_o to_o b_o d_o f._n take_v equemultiplices_fw-la to_o a_o c_o and_o e._n constr●ction_n and_o let_v the_o same_o be_v g_o h_o k._n and_o likewise_o to_o b_o d_o and_o fletcher_n ●ake_z any_o other_o equemultiplices_fw-la which_o to_o be_v l_o m_o n._n and_o because_o that_o 〈◊〉_d a_o be_v to_o b_o so_o i●_z c_o to_o d_z and_o e_o to_o f._n demonstration●_n and_o to_o a_o c_o e_o be_v take_v ●quemultiplices_n g_o h_o king_n and_o likewise_o to_o ●_o d_o f_o be_v take_v certain_a other_o equem●●tipli●●s_n l_o m_o n._n if_o therefore_o g_z exceed_v l_o h_o also_o exceed_v m_o and_o kn_n and_o if_o it_o be_v equal_a it_o be_v equal_a and_o if_o it_o be_v less_o it_o be_v less_o ●y_a the_o converse_n of_o the_o six●_o definition_n of_o the_o five_o wherefore_o if_o g_z exceed_v l_o then_z g_z h_o edward_n also_o exceed_v l_o m_o n_o and_o if_o they_o be_v equal_a they_o be_v equal_a and_o if_o they_o be_v less_o they_o be_v less_o by_o the_o same_o but_o g_z and_o g_z h_o edward_n be_v equemultiplices_fw-la to_o the_o magnitude_n a_o and_o to_o the_o magnitude_n a_o c_o e._n for_o by_o the_o first_o of_o the_o five_o if_o there_o be_v a_o number_n of_o magnitude_n equemultiplices_fw-la to_o a_o like_a number_n of_o magnitude_n each_o to_o each_o how_o multiplex_n one_o magnitude_n be_v to_o one_o so_o multiplices_fw-la be_v all_o the_o magnitude_n to_o all_o and_o by_o the_o same_o reason_n also_o l_o and_o l_o m_o n_o be_v equemultiplices_fw-la to_o the_o magnitude_n b_o and_o to_o the_o magnitude_n b_o d_o f_o wherefore_o as_o a_o be_v to_o b_o so_o be_v a_o c_o e_o to_o b_o d_o f_o by_o the_o six_o definition_n of_o the_o five_o if_o therefore_o there_o be_v a_o number_n of_o magnitude_n how_o many_o soever_o proportional_a as_o one_o of_o the_o antecedentes_fw-la be_v to_o one_o of_o the_o consequentes_fw-la so_o be_v all_o the_o antecedentes_fw-la to_o all_o the_o consequentes_fw-la which_o be_v require_v to_o be_v prove_v the_o 13._o theorem_a the_o 13._o proposition_n if_o the_o first_o have_v unto_o the_o second_o the_o self_n same_o proportion_n that_o the_o three_o have_v to_o the_o four_o and_o if_o the_o three_o have_v unto_o the_o four_o a_o great_a proportion_n they_o the_o five_o have_v to_o the_o six_o they_o shall_v the_o first_o also_o have_v unto_o the_o second_o a_o great_a proportion_n than_o have_v the_o five_o to_o the_o six_o svppose_v that_o there_o be_v six_o magnitude_n of_o which_o let_v a_o be_v the_o first_o b_o the_o second_o c_o the_o three_o d_z the_o four_o e_o the_o five_o and_o fletcher_n the_o six_o suppose_v that_o a_o the_o first_o have_v unto_o b_o the_o second_o the_o self_n same_o proportion_n that_o c_o the_o three_o have_v to_o d_o the_o four_o and_o let_v c_o the_fw-fr three_o have_v unto_o d_z the_o four_o a_o great_a proportion_n than_o have_v e_o the_o five_o to_o f_o the_o six_o then_o i_o say_v that_o a_o the_o first_o have_v to_o b_o the_o second_o a_o great_a proportion_n then_o have_v e_o the_o five_o to_o f_o the_o six_o construction_n for_o forasmuch_o as_o c_z have_v to_o d_z a_o great_a proportion_n than_o have_v e_o to_o fletcher_n therefore_o there_o be_v certain_a equemultiplices_fw-la to_o c_o and_o e_o and_o likewise_o any_o other_o equemultiplices_fw-la whatsoever_o to_o d_z and_o f_o which_o be_v compare_v together_o the_o multiplex_n to_o c_o shall_v exceed_v the_o multiplex_n to_o d_o but_o the_o multiplex_n to_o e_o shall_v not_o exceed_v the_o multiplex_n to_o fletcher_n by_o the_o converse_n of_o the_o eight_o definition_n of_o this_o book_n let_v those_o multiplices_fw-la be_v take_v and_o suppose_v that_o the_o equemultiplices_fw-la to_o c_o and_o e_o be_v g_z and_o h_o and_o likewise_o to_o d_z and_o f_o take_v any_o other_o equemultiplices_fw-la whatsoever_o and_o let_v the_o same_o be_v king_n and_o l_o so_fw-mi that_o let_v g_z exceed_v king_n but_o let_v not_o h_o exceed_v l._n and_o how_o multiplex_n g_z be_v to_o c_o so_o multiplex_n let_v m_o be_v to_o a._n and_o how_o multiplex_n king_n be_v to_o d_o so_o multiplex_n also_o let_v n_o be_v to_o b._n and_o because_o that_o as_o a_o be_v to_o b_o so_o be_v c_z to_o d_z and_o to_o a_o and_o c_o be_v take_v equemultiplices_fw-la m_o and_o g._n demonstration_n and_o likewise_o to_o b_o and_o d_o be_v take_v certain_a other_o equemultiplices_fw-la n_o &_o king_n if_o therefore_o m_o exceed_v n_o g_o also_o exceed_v king_n and_o if_o it_o be_v equal_a it_o be_v equal_a and_o if_o it_o be_v less_o it_o be_v less_o by_o the_o conversion_n of_o the_o six_o definition_n of_o the_o five_o but_o by_o construction_n g_o excedet●_n edward_n wherefore_o m_o also_o exceed_v n_o but_o h_o exceed_v not_o l._n but_o m_o &_o h_o be_v equemultiplices_fw-la to_o a_o &_o e_o and_o n_o &_o l_o be_v certain_a other_o equemultiplices●_n whatsoever_o to_o b_o and_o f._n wherefore_o a_o have_v unto_o b_o a_o great_a proportion_n than_o e_o have_v to_o fletcher_n by_o the_o 8._o definition_n if_o therefore_o the_o first_o have_v unto_o the_o second_o the_o self_n same_o proportion_n that_o the_o three_o have_v to_o the_o four_o and_o if_o the_o three_o have_v unto_o the_o four_o a_o great_a proportion_n than_o the_o five_o have_v to_o the_o six_o then_o shall_v the_o firs●_o also_o have_v unto_o the_o second_o a_o great_a proportion_n than_o have_v the_o 〈◊〉_d to_o the_o sixths_n which_o be_v require_v to_o be_v prove_v ¶_o a_o addition_n of_o campane_n if_o there_o be_v four_o quantity_n campane_n and_o if_o the_o first_o have_v unto_o the_o second_o a_o great_a proportion_n they_o have_v the_o three_o to_o the_o four_o then_o shall_v there_o be_v some_o equemultiplices_fw-la of_o the_o first_o and_o the_o three_o which_o be_v compare_v to_o some_o equemultiplices_fw-la of_o the_o second_o and_o the_o four_o the_o multiplex_n of_o the_o first_o shall_v be_v great_a than_o the_o multiplex_n of_o the_o second_o but_o the_o multiplex_n of_o the_o three_o shall_v not_o be_v great_a than_o the_o multiplex_n of_o the_o four_o although_o this_o proposition_n here_o put_v by_o campane_n need_v no_o demonstration_n for_o that_o it_o be_v but_o the_o converse_n of_o the_o 8._o definition_n of_o this_o book_n yet_o think_v i_o it_o not_o worthy_a to_o be_v omit_v for_o that_o it_o reach_v the_o way_n to_o find_v out_o such_o equemultiplices_fw-la that_o the_o multiplex_n of_o the_o first_o shall_v exceed_v the_o multiplex_n of_o the_o second_o but_o the_o multiplex_n of_o the_o three_o shall_v not_o exceed_v the_o multiplex_n of_o the_o four_o the_o 14._o theorem_a the_o 14
and_o the_o same_o proportion_n wherefore_o by_o the_o 9_o of_o the_o five_o the_o figure_n nh_o be_v equal_a unto_o the_o figure_n sir_n and_o it_o be_v unto_o it_o like_v and_o in_o like_a sort_n situate_a follow_v but_o in_o like_a and_o equal_a rectiline_a figure_n be_v in_o like_a sort_n situate_a the_o side_n of_o like_a proportion_n on_o which_o they_o be_v describe_v be_v equal_a wherefore_o the_o line_n gh_o be_v equal_a unto_o the_o line_n qr_o and_o because_o as_o the_o line_n ab_fw-la be_v to_o the_o line_n cd_o so_o be_v the_o line_n of_o to_o the_o line_n qr_o but_o the_o line_n qr_o be_v equal_a unto_o the_o line_n gh_o therefore_o as_o the_o line_n ab_fw-la be_v to_o he_o line_n cd_o so_o be_v the_o line_n of_o to_o the_o line_n gh_o if_o therefore_o there_o be_v four_o right_a line_n proportional_a the_o rectiline_a figure_n also_o describe_v upon_o they_o be_v like_a and_o in_o like_a sort_n situate_a shall_v be_v proportional_a and_o if_o the_o rectiline_a figure_n upon_o they_o describe_v be_v like_o and_o in_o like_a sort_n situate_v be_v proportional_a those_o right_a line_n also_o shall_v be_v proportional_a which_o be_v require_v to_o be_v prove_v a_o assumpt_n and_o now_o that_o in_o like_a and_o equal_a figure_n be_v in_o like_a sort_n situate_a the_o side_n of_o like_a proportion_n be_v also_o equal_a which_o thing_n be_v before_o in_o this_o proposition_n take_v as_o grant_v may_v thus_o be_v prove_v assumpt_n suppose_v that_o the_o rectiline_a figure_n nh_v and_o sir_n be_v equal_a and_o like_a and_o as_o hg_o be_v to_o gn_v so_o let_v rq_n be_v to_o q_n and_o let_v gh_o and_o qr_o be_v side_n of_o like_a proportion_n then_o i_o say_v that_o the_o side_n rq_n be_v equal_a unto_o the_o side_n gh_o for_o if_o they_o be_v unequal_a the_o one_o of_o they_o be_v great_a than_o the_o other_o let_v the_o side_n rq_n be_v great_a than_o the_o side_n hg_o and_o for_o that_o as_o the_o line_n rq_n be_v to_o the_o line_n q_n so_o be_v the_o line_n hg_o to_o the_o line_n gn_n and_o alternate_o also_o by_o the_o 16._o of_o the_o five_o as_o the_o line_n rq_n be_v to_o the_o line_n hg_o so_o be_v the_o line_n q_n to_o the_o line_n gn_n but_o the_o line_n rq_n be_v great_a than_o the_o line_n hg_o wherefore_o also_o the_o line_n q_n be_v great_a than_o the_o line_n gn_n wherefore_o also_o the_o figure_n rs_n be_v great_a than_o the_o figure_n hn_o but_o by_o supposition_n it_o be_v equal_a unto_o it_o which_o be_v impossible_a wherefore_o the_o line_n qr_o be_v not_o great_a than_o the_o line_n gh_o in_o like_a sort_n also_o may_v we_o prove_v that_o it_o be_v not_o less_o than_o it_o wherefore_o it_o be_v equal_a unto_o it_o which_o be_v require_v to_o be_v prove_v flussates_n demonstrate_v this_o second_o part_n more_o brief_o flussates_n by_o the_o first_o corollary_n of_o the_o _o of_o this_o book_n thus_o forasmuch_o as_o the_o rectiline_a figure_n be_v by_o supposition_n in_o one_o and_o the_o same_o proportion_n and_o the_o same_o proportion_n be_v double_a to_o the_o proportion_n of_o the_o side_n ab_fw-la to_o cd_o and_o of_o to_o gh_o by_o the_o foresay_a corollary_n the_o proportion_n also_o of_o the_o side_n shall_v be_v one_o and_o the_o self_n same_o by_o the_o 7._o common_a sentence_n namely_o the_o line_n ab_fw-la shall_v be_v unto_o the_o line_n cd_o as_o the_o line_n of_o be_v to_o the_o line_n gh_o the_o 17._o theorem_a the_o 23._o proposition_n equiangle_n parallelogrammes_n have_v the_o one_o to_o the_o other_o that_o proportion_n which_o be_v compose_v of_o the_o side_n flussates_n demonstrate_v this_o theorem_a without_o take_v of_o these_o three_o line_n king_n l_o m_o after_o this_o manner_n flussate_n forasmuch_o as_o say_v he_o it_o have_v be_v declare_v upon_o the_o 10._o definition_n of_o the_o five_o book_n and_o ●ift_a definition_n of_o this_o book_n that_o the_o proportion_n of_o the_o extreme_n consist_v of_o the_o proportion_n of_o the_o mean_n let_v we_o suppose_v two_o equiangle_n parallelogram_n abgd_v and_o gezi_n and_o let_v the_o angle_n at_o the_o point_n g_o in_o either_o be_v equal_a and_o let_v the_o line_n bg_o and_o give_v be_v set_v direct_o that_o they_o both_o make_v one_o right_a line_n namely_o bgi._n wherefore_o egg_v also_o shall_v be_v one_o right_a line_n by_o the_o converse_n of_o the_o 15._o of_o the_o first_o make_v complete_a the_o parallelogram_n gt_fw-mi then_o i_o say_v that_o the_o proportion_n of_o the_o parallelogram_n agnostus_n &_o gz_n be_v compose_v of_o the_o proportion_n of_o the_o side_n bg_o to_o give_v and_o dg_o to_o ge._n for_o forasmuch_o as_o that_o there_o be_v three_o magnitude_n agnostus_n gt_n and_o gz_n and_o gt_n be_v the_o mean_a of_o the_o say_a magnitude_n and_o the_o proportion_n of_o the_o extreme_n agnostus_n to_o gz_n consist_v of_o the_o mean_a proportion_n by_o the_o 5._o definition_n of_o this_o book_n namely_o of_o the_o proportion_n of_o agnostus_n to_o gt_n and_o of_o the_o proportion_n gt_fw-mi to_o gz_n but_o the_o proportion_n of_o agnostus_n to_o gt_n be_v one_o and_o the_o self_n same_o with_o the_o proportion_n of_o the_o side_n bg_o to_o give_v by_o the_o first_o of_o this_o book_n and_o the_o proportion_n also_o of_o gt_n to_o gz_n be_v one_o and_o the_o self_n same_o with_o the_o proportion_n of_o the_o other_o side_n namely_o dg_o to_o ge_z by_o the_o same_o proposition_n wherefore_o the_o proportion_n of_o the_o parallelogram_n agnostus_n to_o gz_n consist_v of_o the_o proportion_n of_o the_o side_n bg_o to_o give_v and_o dc_o to_o ge._n wherefore_o equiangle_n parallelogram_n be_v the_o one_o to_o the_o other_o in_o that_o proportion_n which_o be_v compose_v of_o their_o side_n which_o be_v require_v to_o be_v prove_v the_o 18._o theorem_a the_o 24._o proposition_n in_o every_o parallelogram_n the_o parallelogram_n about_o the_o dimecient_a be_v like_a unto_o the_o whole_a and_o also_o like_o the_o one_o to_o the_o other_o abcd._n svppose_v that_o there_o be_v a_o parallelogram_n abcd_o and_o let_v the_o dimecient_a thereof_o be_v ac_fw-la and_o let_v the_o parallelogram_n about_o the_o dimecient_a ac_fw-la be_v eglantine_n and_o hk_o then_o i_o say_v that_o either_o of_o these_o parallelogram_n eglantine_n and_o hk_o be_v like_a unto_o the_o whole_a parallelogram_n abcd_o and_o also_o be_v like_o the_o one_o to_o the_o other_o for_o forasmuch_o as_o to_o one_o of_o the_o side_n of_o the_o triangle_n abc_n namely_o to_o bc_o be_v draw_v a_o parallel_a line_n of_o therefore_o as_o be_v be_v to_o ea_fw-la so_o by_o the_o 2._o of_o the_o six_o be_v cf_o to_o fa._n again_o forasmuch_o as_o to_o one_o of_o the_o side_n of_o the_o triangle_n adc_o namely_o to_o cd_o be_v draw_v a_o parallel_a line_n f●_n therefore_o by_o the_o same_o as_o cf_o be_v to_o favorina_n so_o be_v dg_o to_o ga._n but_o as_o cf_o be_v to_o favorina_n so_o be_v it_o prove_v that_o be_v be_v to_o ea_fw-la wherefore_o as_o be_v be_v to_o ea_fw-la so_o by_o the_o 11._o of_o the_o five_o ●_o be_v dg_fw-mi to_o ga._n wherefore_o by_o composition_n by_o the_o 18._o of_o the_o five_o as_o basilius_n be_v to_o ae●_n so_o be_v dam_n to_o ag._n and_o alternate_o by_o the_o 16._o of_o the_o five_o as_o basilius_n be_v to_o ad_fw-la so_o be_v ea_fw-la to_o ag._n wherefore_o in_o the_o parallelogrammes●_n abcd_o and_o eglantine_n the_o side_n which_o be_v about_o the_o common_a angle_n bad_a be_v proportional_a and_o because_o the_o line_n gf_o be_v a_o parallel_n unto_o the_o line_n dc●_n therefore_o the_o angle_n agf_n by_o the_o 29●_n of_o the●_z first_o be_v equal_a unto_o the_o angle_v adc_o ●_o the_o angle_n gfa_n equal_a unto_o the_o angle_v dca_n and_o the_o angle_n dac_o be_v common_a to_o the_o two_o triangle_n adc_o and_o afg_n wherefore_o the_o triangle_n dac_o be_v equiangle_n unto_o the_o triangle_n agf_n and_o by_o the_o same_o reason_n the_o triangle_n abc_n be_v equiangle_n unto_o the_o triangle_n aef_n wherefore_o the_o whole_a parallelogram_n abcd_o be_v equiangle_n unto_o the_o parallelogram_n eglantine_n wherefore_o as_o ad_fw-la be_v in_o proportion_n to_o dc_o so_o by_o the_o 4._o of_o the_o six_o be_v agnostus_n to_o gf_o and_o as_o dc_o be_v to_o ca_n so_o be_v gf_o to_o fa._n and_o as_o ac_fw-la be_v to_o cb_o so_o be_v of_o to_o fe_o and_o moreover_o as_o cb_o be_v to_o ba_o so_o be_v fe_o to_o ea_fw-la and_o forasmuch_o as_o it_o be_v prove_v that_o as_o d●_n be_v to_o ca_n so_o be_v gf_o to_o favorina_n but_o as_o ac_fw-la be_v to_o c●_n so_o be_v of_o to_o fe_o wherefore_o of_o equality_n by_o the_o 22._o of_o the_o five_o as_o dc_o be_v to_o cb_o so_o be_v gf_o to_o fe_o wherefore_o in_o the_o parallelogram_n abcd_o and_o
which_o be_v require_v to_o be_v prove_v ¶_o the_o 34._o theorem_a the_o 34._o proposition_n if_o a_o number_n be_v neither_o double_v from_o two_o nor_o have_v to_o his_o half_a part_n a_o odd_a number_n it_o shall_v be_v a_o number_n both_o even_o even_o and_o even_o odd_a svppose_v that_o the_o number_n a_o be_v